Atmospheric turbulence conditions leading to focused and folded sonic boom wave fronts.

نویسنده

  • Andrew A Piacsek
چکیده

The propagation and subsequent distortion of sonic booms with rippled wave fronts are investigated theoretically using a nonlinear time-domain finite-difference scheme. This work seeks to validate the rippled wave front approach as a method for explaining the significant effects of turbulence on sonic booms [A. S. Pierce and D. J. Maglieri, J. Acoust. Soc. Am. 51, 702-721 (1971)]. A very simple description of turbulence is employed in which velocity perturbations within a shallow layer of the atmosphere form strings of vortices characterized by their size and speed. Passage of a steady-state plane shock front through such a vortex layer produces a periodically rippled wave front which, for the purposes of the present investigation, serves as the initial condition for a finite-difference propagation scheme. Results show that shock strength and ripple curvature determine whether ensuing propagation leads to wave front folding. High resolution images of the computed full wave field provide insights into the spiked and rounded features seen in sonic booms that have propagated through turbulence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Turbulence-degraded wave fronts as fractal surfaces

We identify wave fronts that have passed through atmospheric turbulence as fractal surfaces from the Fractional Brownian motion family. The fractal character can be ascribed to both the spatial and the temporal behavior. The simulation of such wave fronts can be performed with fractal algorithms such as the Successive Random Additions algorithm. An important benefit is that wave fronts can be p...

متن کامل

Recent progress on sonic boom research at NASA

Sonic boom research conducted at NASA through the Supersonics Project of the Fundamental Aeronautics Program is oriented toward understanding the potential impact of sonic boom noise on communities from new low-boom supersonic aircraft designs. Encompassing research in atmospheric propagation, structural response, and human response, NASA research contributes to knowledge in key areas needed to...

متن کامل

Sound Propagation of Sonic Booms through Real Atmospheres Emitted from a New Supersonic Business Aircraft

Supersonic air transport generates sonic booms that can affect people, animals and structures. There is a renewed interest in high-speed transport for civilian application. The widely used standard atmosphere for sonic boom prediction is neither capable of describing topographical variation, nor temporal variations, nor the impact of wind on the propagation of a sonic boom. However, within the ...

متن کامل

A Laboratory Study of Subjective Response to Sonic Booms Measured at White Sands Missile Range

The Sonic Boom Simulator of the Langley Research Center was used to quantify subjective loudness response to boom signatures consisting of: (a) simulator reproductions of booms recently recorded at White Sands Missile Range; (b) idealized N-waves; and (c) idealized booms having intermediate shocks. The booms with intermediate shocks represented signatures derived from CFD predictions. The recor...

متن کامل

CFD Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

An axisymmetric full Navier-Stokes computational fluid dynamics study is conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock research airplane, is considered. The computational fluid dynamics code i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 111 1 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2002